سمینار برق نقش تولید پراکنده و تولید همزمان در صنعت برق تجدیدساختارشده
پایان نامه جداسازی کور منابع صوتی چکیده جداسازی کور منابع یکی از موضوعات مورد بررسی در زمینه پردازش سیگنال است که به علت کاربردهای فراوان، توجه به آن خصوصا در دو دهه اخیر افزایش یافته است. هدف از انجام این عمل، جداسازی منابع از مخلوط آنها می باشد. به این مکانیزم کور گفته می شود، چون جداسازی سیگنال ها در حالی صورت می گیرد که اطلاعات اولیه ای راجع به منابع و چگونگی ترکیب آنها توسط سنسورهای گیرنده وجود ندارد و تنها اطلاعات موجود، سیگنال مخلوط منابع است. روش های متعددی برای جداسازی کور منابع ارائه شده است. که یکی ار مهمترین آنها جداسازی سیگنال ها در صفحه زمان – فرکانس است. یکی از الگوریتم هایی که اخیرا برای جداسازی منابع با ترکیب لحظه ای خطی ارائه شده است، روشی است که در آن جداسازی با استفاده از نسبت زمان – فرکانس مخلوط سیگنال ها انجام می شود که به طور اختصاری TIFROM نامیده می شود. در این رساله برای توسعه شیوه پیشنهاد شده در الگوریتم TIFROM روشی برای تفکیک منابع با ترکیب بدون اکو با نام A-TIFROM ارائه می شود. در الگوریتم پیشنهادی ابتدا با استفاده از تبدیل زمان – فرکانس، سیگنال سنسورهای دریافتی از محور زمان به صفحه زمان – فرکانس تصویر می شوند و سپس با محاسبه نسبت سیگنال ها در حوزه زمان – فرکانس، ضرایب حذف منابع تخمین زده شده و با استفاده از این ضرایب، ماتریس حذف منابع در حوزه زمان – فرکانس محاسبه می شود. با اعمال ماتریس حذف، منبع مورد نظر از سیگنال های ترکیب حذف می شود. سپس با استفاده از عکس تبدیل زمان – فرکانس سیگنال های جدا شده به محور زمان باز می گردند. یکی از مزیت های عمده این روش این است که الگوریتم قادر است سیگنال هایی را که در حوزه زمان – فرکانس هم پوشانی دارند را نیز با کیفیت مناسب تفکیک نماید. زیرا یافتن یک ناحیه باریک از صفحه زمان – فرکانس که فقط متعلق به یک منبع باشد برای تعیین ضرایب حذف، کافی است. در حالی که شاید آن منبع در سایر نواحی زمان – فرکانس با سایر منابع هم پوشانی داشته باشد. بنابراین با ارائه الگوریتم پیشنهادی A-TIFROM برای حالت ترکیب بدون اکو می توان مخلوط سیگنال های صحبت و یا موسیقی را هم از یکدیگر تفکیک نمود. در الگوریتم TIFROM جداسازی برای ترکیب لحظه ای خطی از منابع ارائه شده است در حالی که الگوریتم پیشنهادی برای جداسازی منابع با ترکیب بدون اکو ارائه گردیده است. بنابراین در بخش شبیه سازی برای مقایسه نتایج، الگوریتم A-TIFROM با الگوریتم ICA که از نظر نوع ترکیب منابع، تعداد سنسورها و تعداد منابع در شرایط یکسان می باشند، مقایسه می گردد. نتایج شبیه سازی نشان می دهد الگوریتم پیشنهادی به طور متوسط با SIR بالای 33dB و SDRبالای 20dB و زمان اجرای کمتر از 4 ثانیه برای جداسازی ترکیبات دوتایی از سیگنال های صحبت و موسیقی مناسب می باشد. مقدمه جداسازی کور منابع یکی از موضوعات مورد بررسی در زمینه پردازش سیگنال است که توجه به آن در دو دهه اخیر افزایش یافته است. جداسازی سیگنال ها در کاربردهای متنوعی از پردازش سیگنال از جمله پردازش سیگنال های صحبت تا تحلیل تصویرهای پزشکی به کار می رود. هدف از جداسازی منابع، تخمین سیگنال N منبع ناشناخته مختلف با استفاده از مخلوط سیگنال های دریافتی توسط P سنسور است. به دلیل اینکه اطلاعات اولیه ای راجع به منابع و چگونگی ترکیب آنها وجود ندارد. مسئله جداسازی، جداسازی کور نامیده می شود. به طور کلی در مسئله جداسازی کور منابع، P مخلوط خطی از N منبع داریم که تابع تبدیل بین منابع و سنسورها، ماتریس مجهول A به ابعاد N*P می باشد و در رابطه x=As بردار s شامل منابع، s=[s1,s2,…SN]T و x=[x1,x2,…xP]T هم مخلوط سیگنال های دریافتی توسط P سنسور است. بلوک دیاگرام کلی مسئله BSS در شکل 1-1 نشان داده شده است. شرایط محیطی و نوع مخلوط روی پیچیدگی مسئله BSS تاثیر می گذارند. در یک محیط طبیعی سیگنال های با انعکاس توسط سنسورها دریافت می شوند و بنابراین تخمین ماتریس A به شناسایی جهت منبع در زمان های مختلف نیاز دارد. عموما برای ساده تر شدن مسئله، فرضیاتی برای محیط در نظر گرفته می شود که عبارتند از: الف) مخلوط لحظه ای: فرض ابتدایی که برای محیط در نظر گرفته می شود این است که سیگنال ها به صورت همزمان ولی با تضعیف های متفاوت به سنسورها برسند. در این محیط رابطه خطی ثابتی بین منابع و سنسورها برقرار است. (ماتریس A یک ماتریس اسکالر به ابعاد N*P با مقادیر ثابت است) x(t)=As(t ب) مخلوط بدون اکو: در این محیط فرض می شود، سیگنال هر منبع با یک تضعیف و تاخیر منحصر به فرد به هر سنسور برسد. در این حالت بین منابع و سنسورها رابطه کانولوشنی برقرار است. x(t)=A*s(t ج) مخلوط اکودار: این محیط کامل ترین حالت است که در آن بین هر منبع و هر سنسور چند مسیر در نظر گرفته می شود. رابطه بین منابع و سنسور یک رابطه کانولوشنی می باشد که ماتریس A نسبت به حالت قبل پیچیدگی بیشتری دارد. x(t)=A(z)*s(t همچنین در مورد منابعی که در مسئله جداسازی کور سیگنال وجود دارند می توان فرضیاتی در نظر گرفت. این فرضیات اساس کار بیشتر الگوریتم های جداسازی منابع را تشکیل می دهند که شامل مشخصات آماری نظیر استقلال، غیرگوسی بودن و… می باشد. یکی از فرضیات قدرتمند معروف این است که منابع در یک حوزه تبدیل (مانند تبدیل فوریه، تبدیل زمان – فرکانس و…) روی هم افتادگی نداشته باشند. روش هایی که از این فرض استفاده می نمایند. به عنوان روش های اسپارس شناخته می شوند. مزیت این فرض این است که احتمال اینکه دو یا تعداد بیشتری از منابع همزمان در یک نقطه از فضای اسپارس فعال باشند بسیار کم است. بنابراین در یک فضای اسپارس می توان با تخمین ضریب مربوط به هر منبع به تنهایی، سهم منبع مورد نظر را از ترکیبات حذف کرد. این فرض در شرایطی که تعداد منابع بیشتر از سنسورها می باشد (حالت نامعین) کاربرد دارد. برای نمایش اسپارس یک سیگنال آکوستیک اغلب از تبدیل فوریه، تبدیل گابر و تبدیل موجک استفاده می شود. سمینار برق نقش تولید پراکنده و تولید همزمان در صنعت برق تجدیدساختارشده |
![]() |
دسته بندی | سمینار برق |
فرمت فایل | |
حجم فایل | 3052 کیلو بایت |
تعداد صفحات فایل | 168 |
سمینار برق نقش تولید پراکنده و تولید همزمان در صنعت برق تجدیدساختارشده
چکیده:
در دو دهه اخیر، تکامل تکنولوژی تولیدات پراکنده (DG)، تجدید ساختار صنعت برق و بوجود آمدن بازارهای آزاد رقابتی، تغییر نگرش اقتصادی پیرامون این تولیدات، ملاحظات زیست محیطی و… موجبات علاقه مجدد تولید پراکنده را فراهم نموده است. هم اکنون در ایران، همزمان با حرکت به سوی تجدید ساختار صنعت برق و برای همسو بودن با این مهم، استفاده از تولید پراکنده و همچنین استفاده از سیستم های تولید همزمان به ویژه در سال های اخیر مطرح گردیده است. از طرفی بکارگیری سیستم های تولید همزمان (CG) باعث افزایش بیشتر راندمان نیروگاه ها و همچنین کاهش سطح آلاینده های منتشره از آن ها گشته است.
ورود تولیدات پراکنده و سیستم های تولید همزمان به بازارهای برق، ملاحظات بسیار مهمی را بوجود آورده است که بررسی آن ها در قالب یک سمینار ضروری می نماید. امید است در این سمینار به بررسی نقش سیستم های تولید پراکنده و تولید همزمان در صنعت برق تجدیدساختاریافته و بازارهای رقابتی کامل پرداخته شود.
براین اساس ابتدا مقدمه ای پیرامون مباحث مورد نظر در این سمینار آورده شده است. در فصل اول مروری بر تجدیدساختار صنعت برق و ویژگی های بازارهای تجدید ساختاریافته خواهیم داشت. سپس در فصل دوم انواع تولیدات پراکنده مورد بررسی قرار میگیرد. در فصل سوم، سیستم های تولید همزمان مطالعه می گردد. در فصل چهارم نقش تولید پراکنده و سیستم های تولید همزمان در بازارهای تجدیدساختار یافته مورد بررسی قرار خواهد گرفت. عنوان فصل پنجم، بازار برق ایران و حرکت به سمت تجدیدساختار و گسترش و توسعه سیستمهای تولید همزمان و تولیدات پراکنده میباشد و در فصل آخر نیز به نتیجه گیری مباحث بررسی شده در فصل های قبل، پرداخته میشود.
مقدمه:
تولید پراکنده (DG) در مفهوم کلی آن به هر نوع تولید در محل مصرف اطلاق می گردد . چنین اصطلاحی پیش از آن که انرژی الکتریکی جایگزین صورت های دیگر انرژی مانند حرارت، روشنایی، انرژی مکانیکی و … شود نیز وجود داشت. شاید بتوان ساده ترین مصداق تولید پراکنده انرژی را آتشی دانست که انسان های اولیه جهت مصارف حرارتی خود از آن بهره می بردند. با گذشت زمان و پیشرفت تکنولوژی، شبکه های جریان متناوب (AC) و نیز نیروگاه های در مقیاس بزرگ پا به عرصه صنعت نهادند تا بتوان انرژی الکتریکی را در فواصل طولانی انتقال داد،توان خروجی نیروگاه ها را افزایش داد، بارهای مصرفی بزرگ را تأمین نمود و نیز هزینه های سرمایه گذاری و بهره برداری به ازاء هر کیلووات قدرت تولیدی را کاهش داد.
در دو دهه اخیر تکامل تکنولوژی تولیدات پراکنده، تجدید ساختار صنعت برق و بوجود آمدن بازارهای آزاد رقابتی، تغییر نگرش اقتصادی پیرامون این تولیدات، ملاحظات زیست محیطی و … موجبات علاقه مجدد تولید پراکنده را فراهم نموده است. امروزه نیروگاه های تولید پراکنده به نیروگاه هایی با ظرفیت تولیدی کم، از چند کیلووات تا چند مگاوات که برای تولید انرژی الکتریکی مورد نیاز در نزدیکی مصرف کننده مورد استفاده قرار می گیرند اطلاق می شود .این نیروگاه ها شامل نیروگاه های بادی، خورشیدی، پیل سوختی، موتورهای رفت و برگشتی گازسوز و دیزلی، توربین های صنعتی، میکروتوربین ها و … می باشند.
عوامل بسیاری را می توان برای رویکرد مجدد صنعت برق به تولید پراکنده نام برد. IEA(2002) پنج عامل اساسی را در رابطه با رویکرد مجدد به تولید پراکنده بر می شمرد که عبارتند از: پیشرفت تکنولوژی های تولید پراکنده، محدودیت در ساختن خطوط انتقال جدید، افزایش تقاضای مصرف کنندگان جهت تهیه برق با قابلیت اطمینان بالا، آزادسازی (تجدید ساختار) بازار برق و نگرانی های زیست محیطی. برخی نیز بر این اعتقادند که پنج عامل فوق را می توان در دو فاکتور مهم و اساسی تجدید ساختار برق و مسائل محیط زیست خلاصه نمود.
فن آوری های امروزه تولید پراکنده از نظر بهره برداری، ظرفیت و قابلیت توسعه آتی قابل انعطاف هستند. لذا امروزه تولید پراکنده امکان ارائه خدمات مناسب تأمین و نگهداری برق را داراست .به عنوان مثال استفاده از تولید پراکنده امکان واکنشی انعطاف پذیر به تغییرات قیمت را داده و می تواند به عنوان مانعی در برابر نوسانات قیمت بازار برق عمل کند. این امر را می توان جزء اصلی ترین موارد استفاده از تولید پراکنده در ایالات متحده آمریکا دانست.حال آن که در اروپا تقاضای بازار برای استفاده از تولیدات پراکنده به عنوان مقدمه ای جهت استفاده از منابع تجدیدپذیر انرژی برای تولید انرژی پاک و نیز افزایش راندمان تولید می باشد. از دیگر دلایل مهم استفاده تولید پراکنده افزایش قابلیت اطمینان است . زیرا با تجدید ساختار بازار و نیز گسترش بازار رقابتی، مشتریان نسبت به قابلیت اطمینان تأمین برق مورد نیاز خود هشیارتر شده اند. لذا تولید کنندگان نیز به دنبال راه حل هایی برای افزایش قابلیت اطمینان برق تولیدی خود می باشند.
از جمله مهم ترین پیامدهای تجدیدساختار صنعت برق، خصوصی سازی صنایع مرتبط با آن صنعت می باشد.بالا بودن قیمت نیروگاه های بزرگ و نیز زیادبودن هزینه های سرمایه گذاری برای احداث این نوع نیروگاه ها، مانعی اساسی در تحقق اهداف خصوصی سازی محسوب می گردد . استفاده از نیروگاه های تولید پراکنده هزینه سرمایه گذاری در تولید انرژی الکتریکی را کاهش می دهد و نیز باعث افزایش سرمایه گذاری در این امر می شود. علاوه بر موارد فوق، بحران نفت در سال 1973 و همچنین بالا رفتن قیمت نفت در سال های اخیر موجب شده است تا بسیاری از کشورها که در صنایع خود، وابسته به سوخت های فسیلی بودند، به دنبال یافتن جایگزین های مناسب برای این گونه سوخت ها باشند. همچنین با افزایش آگاهی عمومی از مسائل زیست محیطی و تغییر نگرش در سیاست های تأمین انرژی و در اولویت قرارگرفتن مسائل محیط زیست، یافتن جایگز ین های مناسب و پاک برای سوخت های فسیلی ضرورت یافت. مطالعات نشان می دهد انرژی های تجدیدپذیر مانند انرژی خورشیدی، بادی، جزر و مد، زمین گرمایی، بایوماس و … از نظر زیست محیطی فاقد آلودگی می باشند و جایگزین مطلوبی برای سوخت های فسیلی هستند.